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INTERCOMPARISONOF THE FINITE DIFFERENCE AND NODAL DISCRETE ORDINATES
AND SURF.lCEFLUX TRANSPORT METHODS FOR A LWR POOL REACTf)?!BENCH?IARK

PROBLEM IN X-Y GEOMETRY

R.D. O’Dell

University of California
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Los Alamos, Mexico 07545, USA

J. Stepanek
Swiss Federal Institute for Reactor Research,

5303 Wuerenlingen, Switzerland

and

M.R. Wagner
Kraftwerk Union AG

8520 Erlangen, Fed. Rep. of Germany

Th@ aim of the present work is t(]compare ancldiscuss the three of the
most advanced two dimcn~ional t.rnncportmcthodc, the finite diffor(’ncc

and nodal rliscrct~ordinates and surfacr flux m~~thod,incorlwr:ltwl
ink.otk,etronsport codes TWCHIANT,TW@Tl{AN-N()[)A1,,MII1,’TIME[)llIMan(l::IIRCII.
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INTEF!COMPAR?.SONOF THE FINITE DIFFERENCE AND NODAL DISCRETE ORDINATES
AIJDSURFACE FLUX TRANSPORT METHODS FOR A LWR POOL REACTOR BENCHNARK

PROBLEM IN X-Y GEOMETRY

INTRODUCTION

In spite of the great deal of progress made in recent years in transport
theory methods the performance of these is still far from being satisfactory.
Particularly objectionable are the long computing times encountered when
the number of variables, spatial meshes and energy groups beromes very large
in 2 and 3 dimensions.

The most widely used method is the discret~:ordinates method (S
This method is based on tl)esolution of tb,eintegro-differentia? :;:3:;
using discrete angular integration, In 2 and 3 dimensions it also leads to
a simple: formalism than other methods.

However, its main rlisadvanta(leis the so-called ray effect.

In addition the usc of the finit~ difference scheme in space with just flat
or Iincar flux approximation requires in many problems up t.otens of
t.housundsof meshes for the aclcquatcac:curacyof the solution in two dimcn-
clons.



as surface flux approximations,boundary flux and volume spatial flux
ap? oxidations.

The three above mentiorl, methods are incorporated into the finite differ-
ence S code TWODANT 1,t. nodal SN code TW!)TRA.N-iiODAL2*3, a nodal SN code

MULTIh#DIUM “ and the sur,~ce flux codes SURCU 5~6~’j.For the sake of com-
parison some results by Y. ‘!ederbeland Z. Stankovski (CEA, France) using

the French collision proballity codes MARSYAS8 and TRIDENT 9 are also in-
cluded.

An LWR pool reactor benchmark problem ‘o with fission sources is used for
the calculations. This case is very difficult to calculate because the zones
are optically thick (large value of Et x dimension) and weakly connected. It
is therefore difficult to obtain the results with high accuracy. Additionally
the spatial flux distributionvaries rapidly so that a very large number of
meshes has to be used if the problem should be converged using the finite
difference scheme only. This benchmark problem is therefore suitable to
study the effectiveness of the methods which use a higher orde~ of spa!;ial
flux approximation, such as the nodal approach of expansion of the spa.ti~l
flux into Legendrc polynomial series or approximating it llsingthe highur
order of LaCran&e polynomials, for example.

In contract to the above, the:~jrdcrof ST:or PN approxi],lationof the sur-
fucc f’luxclsin not vrry irnportunt.

hvcau!:vthe transport 2cJlutio1~to this problem is clc~oeto it2 diffu:;ior]

::olution,ttl{’truns]mrt r(’:.)ultoarc nl.:;ocompared witl]thcjseot,tain~du:i]]~f
(,1](:f’il]it[![!lrmc:nt,dif’f’u::io!]c:mlt’FINIH,M‘~ aridthe firlit,c dif’1’~’r(:llct:
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Neutron cross sections

Material ‘a Vz
f

Zt Xqo x
. S1

1 0.07 0.079 0.60 0.53 0.27

~ 0.28 0.O 0.48 0.20 0.02”

3 0.04 0.043 0.”/0 0.66 0.30

4 0.15 0.0 0.65 0.50 0.15

5 0.01 0.0 0.90 0.89 0.40

Normalization: Total production = 1 (n/see).

Eigenvalue and average fluxes in the material zones are calculated.

DEVELOPMENT OF THE DI}MGND-DIFFERENCEEQUATIONS

The widel!,’-useddiamond difference scheme (used in the diffusion synthetic
accelerat “~TWODANT code at.Los Als,mos)lis readily developed by consider-
il)~the i,, mc:ficell to be defined as the rectangle defined by—

‘L2x2xR’yB2y5yT and ‘lth Ax=xR:xL’Ay=yT “B”
The discrete--

orc?inate~form of the transport equation for this cell for ener~y gro’lpE
and direction m is

(1.)

(:))

(3)

11111’

r),,,= ,’IJ, - q,l) o
Uv
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The solution procedure is to simply substituteEqs. (3) and (4) into Eq. (2)
and then solve for $av. Then the outflow fluxes *R and VT are computed

from the diamond-differencerelations. It is readily seen that the outflow
fluxes, when extrapolatedusing Eqs. (3) and (4), can be negative. When this
occurs the offending negative outflow flux is set to zero and Eq. (2) is
again solved (with that outflow flux explicitly set to zero) for ~av. This
procedure is called the “set-to-zero fixup”. The use of fixups causes some
degree of uncertainty in the accuracy of the computed results, however. In
addition, flux fixups tend to interact rather unfavorably with iteration
acceleration schemes, that is, acceleration schemes are generally less
effective when many flux fixups are needed. To reduce the number of flux
fixups requires reducing the mesh cell sizes (increasingthe number of
mesh cells), an option that increases both the computer storage requirements
and the execution time. In many multidimensionalproblems it is simply not
possible to refine the mesh sufficiently.The negative fl~/flux fixup
problem with the diamond difference scheme is equivalent to saying that the
scheme is an insufficientlyaccurate spatial di.fferencingscheme for many
multidimensional transport problems. This is seen in the table of result~
for the benchmark problem analyzed in this paper using the diamond-differ-
ence code TWODANT. Even at the 120 x 120 mesh the problem is still not fully
converged to the “exact” k.ff and zone-averaged fluxes for the S8 ~Ua~rCitUr~

used.

Thus, even though diamond-differencecodes such as TWOTRA_N-IIzfindDOT-1+]3
are still the most commonly used deterministictxansport codes, there is a
great need for more production codes employing more accurate differencirlC
scheme without an undue in?rease in computational time or computer storafle
requirements.

DEVELOPMIINTOF THE 1.0SALAMOS NODAL 13QUATION5

(()



and that the source for a given iteratian is determined
the previous iteration. It is further assumed, for this
q ? O so that the fluxes on the node edges at XL and YE

We represent the angular flux along the top edge of the
expansion:

\
‘L

<X<x
R

V(X,YT) =$T+ 6T * 2(x- Xi)/AX

I

using fluxes from
analysis, that P > 0,
are known.

node by the linear

(7)

with similar expressions for the

Nodal equations are geaerated by

(Y=YT

other node edges.

performing transverse integrations of (5)

over the node in the x- and y-directions. If we integrate (5) over {xL,xRl
there results an ordinary differential equation for YO(y) z

1

K JY(x,y) dx :

‘L

qdYo(y’

We can also

the!node to

6/Ax2*

[ 1/dy + UyO’y) = S + Sy * :’(Y - yj)/&f - (v/Lx) ‘+’(XB,Y) - y(xLsY) .
av

(8)

multiply (5) throuzh k)y(b/Ax2)(x - xi) and x-integrate over

ReL an equation for the y-dependent, first flux momeht W](Y) :

‘r:

J(x - xi) ~(X,y) dx :

‘L (9)

.
~ dYL(y)/dy + c#(y) =~

{ [
x + (6v/Ax)* V“(y) - O.~ :(x,{?J) ]}

+ Y(XL,Y) .

Similar cxpre65ion for ‘t’”(x)nlldY1(x) can bc;obtnined by
the y-direction.

Exact solutionfi to (8) and (())arc ol~tnin~’d“-ridcvulumtlcd
These me:

YT

WYT) = iJT = $D exp(-cy) + (l/r])*

I

dyl [’xp(”-o(y,,F

in”(,egratinEin

at y= y .
T

y’)/rl)* (1.0)

Yl,



and

.

1s [
~v + (2/AY)(Y’ - Yj) ● SY - (P/Ax) y(xR,y’) - $(xL,y’)

11

YT

Y1(YT) = eT= eB exp(-cy)+(l/n)*

J

dy’ exp{-u(yT - Y’)~n)*

(lo)

-YB

(11)

\
[

~sx + (6P/Ax) Yo(yf)
1[

- o.5{YqxR,y’) + qxL,y’)} .

Similar exact expressions for Yo(xR) s $R and Y1(~R) E GR are also generated.

In these expressions we have defined E E UAy/Tl and Cx = uAx/u.
Y

For the linear-linear nodal method it is assumed that the in’Leriorflux
~(X,y), XL < X < XR, yB C y < yT, is given by

y(x,y) = $av + $x * 2(x - xi)/Ax + $ * 2(y - yj)/Ay . (12)
Y

~quation(6) is used for computin~the linear source distribution witk]in the

cell.

Far the seven unknowns $T $R, @av, $x, $Y, OT, and OR we require seven

ec~uations.Three of these equations are conservation equations found by

takinE the 1, (6!Ax2)* (x - xi), and (6/Ay2)(Y -yj) moments ofEq. (5).

T}]crem:,inin~four equat.ioncare found by inserting the linear flux ex-
pansions directly into Equation: (10) and (11) and their companion equationc
for VO(xR) and ‘+’l(xR)and anmlyticaily perf’ormi.ngthe inte~rations.

The manrlerin w]lichthese seven equations are solved requireo careful treat-
ment 1 ,ensure.a proper soluticn when a is small or zero.

This nodal method wa:;proErammcd into a special version of the TWOTRAN-112
code at LOG Alamos. No attempt was made to provide this nc “Lcode with nn
effective iteration acceleration cc!~eme.Accordingly, the nodal com]utcr
fuIlsconverged very slowly. Before the linear nodal mcthad at Los AIWJOC
can achieve production code ntntus, an effective iteration accclc,ration
must bc devised and implcmcvrtccl,Work in Ltliu rcmnins to be pcrforrnecl.

Gencrully, the Los Alamos linear nodul method described in thifi-”pspcrnrld
in 17efercnce3, requirerrnbout 2.5 times ns much computational time ao tll(’
diamond difference scheme pcr mesh CCU, cnlculatinn. Additionally, the
lincnr nodal method require~ about twice as much computer Ktorngc as dce:,
a comparnhlr dismond difference cmie. The linear nodai.mctl]od,howcw?r,
generally produces rcoultn of comparat~lcaccuracy to t]lo:;cfrom diumo!ld-
dif’fcrcllcingbut with fnr frwcr meuh cull:;,especially if one io in~rrcstcd



in pointwise quantities. A net savings in both computer time and storage is
obtainable using the linear-linear nodal scheme when compazed with the dia-
mond-difference scheme for the same accuracy.

NODAL DISCRETE C’WIINA’i’ESMETHOD AT KWU

The nodal discrete ordinates method 4 (NDOM) i.sa hybrid method for the
approximate solution of the two-dimensionaltransport equation in rectar=w-
lar x,y geometry. The method combines certain features cf the integral “trans-
port theory and the discrete ordinates method with ideas derived from the
nodal diffusion theory approach 4>14. As in the latter, the primary
variables are the node average scalar fluxes and the surface averaged

+ at the node boundaries. To simplify the notation, the—
~~~~~a~n~~r~~~l~g be omitted hereafter. The angular distribution of th~L
incoming and outgoing surface fluxes is described in terms of average half
range angtl.larflux moments defined by

(13)

where u is the spatial direction normal to the node boundary at U=U ; P is

the direction cosine and @u is the azimuthal angle with respect to the
u-axis. According to (13) these ang~lar flux moments are defined by formally

integrating over both the transverse spatial and angular dimensions (direc-
tion v and azimuthal angle $ ) of the node. The acutal nodal variables of
NDO}Jare the partial current: on the left (1) and right (r) node boundaries

L1.= X,y
+(1)

Jt(u ) = O- (u), s = l,r ,~ -’

and the avera~e half ran~e u-moments (with n=l, ...,n )
Max

#(n)(n~)
u~%J,) -

#(o)(u ) “
0

(14)

(15)

Note, that from these variables the surface averaged scalar fluxes on t;le
node edgc?sare determined as

J+(us) J-(us)
Q(U5) = —+ (16)

+(1)

kJ
#

D (us)

In the NDOM version as currently implemented in the nudal multigroup pro-
gram MULTIMEDIUM nMax is equal to 2, wt~ichcorresponds to assuming a DP2

a~~~roximatiorifcr the angular distribution of the surface fluxes.



In analogy to the procedure in nodal diffusion theory methods the basic
iterative step in solving the NDOM equations is to compute, for a fixed set
of-in-currents and in-moments on all faces of a particular node> a new set
of correspondingout-currents and out-moments by solving a system of’coupled
one-dimensionaltransverse integrated transport equations4 . These auxili-
ary equations are derived by applying the operator

Av 27

1 Hdv d$u
21TAv ,

to the two-dimensionaltransport equation with isotropic scattering. As a
result, a system of two one-dimensional slab type equations is obtained

#l,P)
13u -

utY(u,p) - CT/(u) = Q(u) - lJv(u,u), (17)

with u=(x,y), for the “double” transverse integrated angular fliJxesY(u,IJ).
130theq~ations (17) are coupled through the transverse leakage term
I,V(U,U).In the simplest version ofNDOM4 the transverse leakage is assumed
to be isotropic and spatially constant. Hence, LV(U,I.l)is expressed in terms
of the partial currents in the transverse direction v

[ 1LV(U,LJ)=+ J+v(@ - J-V(AV) + J-?o) - J+(l) . (18)

The discrete ordinate form of Eq. (17) is discretized spatially as in con-
ventional S -codes, using the diamond differencing scheme for an equi-

t“distant spa lu1 mesh. These equations are sGlved, for each energy gro~.~,by
a direct inversion of the streaming-collisionoperato~’.This then obviates
the need for iterating on the scattering source and for storing the one-
iiimensionalgroup scurces from one global outer iteration to the next. As
a result, the same overall iteration strategy and the same methods of con-
vergence acceleration can be used as for nodal diffusion theory calculations ,14

The nodal discrete ordinates method has been implemented i.nthe framework
of the nodal code i~7JLTIMEDIUM“by,essentially, adding a central SU r utine

??+nand by assigning additional sto?’agefields for the newvariables~— . 1:1
this form MIJLTI!vIEDIUMis predominantly used for carrying out transport-
depletion calculations for the analysis of heterogeneous LWR fuel assemblies
15,16 . 13enchmark calculations 15 for a number of PWR and BWR asseril~ly
problems have demonstrated the accuracy and computational efficiency of the
nodal discrete ordinates method for this type of application.

The results presented in this paper show that NDOM allowsone also to solve
transport theory problems involving large homogeneous regions with reason-
able accuracy and short computing times. Another example is the ZPPR-7A
problem for which some results are given in reference IG. From the results
listed in Table 2 for the EIR-3B problem one notes thnt the NDOM solu~ions
do not exactly converge to the asymptotic solution of the expllcit twu-
dimensional SN codes TWLJI)ANTor ‘1’WOTRAN-NODAL.There are several rensons
for this behavio?. One is the fu [, t.lIILt a double Gauss quadrature has becll
used in the one-dimensionalnodal ,SHcalculations. However, it is bel-~eved

—



that the discrepancy is mainly a consequence of the simplifying assumption
of isotropic transverse leakage, Eq. (18). For the present.problem, as well
as for many other problems studied, the resulting error is not large. There–
fore, it was decided to accept this error, for the time being, and to put
the emphasis on consolidatingthe isotrcpic leakage version of NDOM in
MULTIM3DIUM for routine use in design oriented LWR applications. On tne
other MU-Id . . . .

~ prellmlnarY lnVeStlgatlOns Indicate that it is ~~:sible to
correct for this error by introducing suitable angular (and spatial) approxi-
mations of the transverse leakage term Lv(u,p) in Eq.(i7). The development
of such an improves and stable algcrith.mremains an objective of future
work.

SURFACE FLUX MULTIPLE PN METHOD

The general surface flux method is used to solve tne i:ltegralneutron trans-
port equation in X-Y geometry. The spatial distribution of neutron
flux and sourres is represented by a Legendre polynomial expansion while
zonal spherical harmonics, Yz, orthogonal in angular zones, are used to
approximate the incoming and outgoing surface fluxes in Iz angular zones at
the interfaces between space intervals.

This method is incorporated into the code SURCUS . SURCU is alsc written
for one-dimensional geometries~ plane, spherica13 and cylindrical, consider-
ing the double P~ approximation of the angular fluxes at the mesh boundaries.
In X-Y geometry It subdivides space into rectangular meshes and solves the
integral equation in eacl]meskl.Meshes are then connected to each other
through incoming surface cu,rrents011the mesh boundaries. The angular space
at the mesh boundaries is first ~~lbdividedinto four angular quadrants,
each of which is then further divided into 12 angular zones In each angular
zone zonal spherical harmonics (i.e. angular functions orthogon&7 in a zone)
are used to develop tilean~ular distribution of surface fluxes. The spatial
distribution of th~ neutro~ flux and
Legendre polynomial expansion.

In the preser.twork all calculations
angular space at the mesh boundaries
only.

Coilsidera geometrical configuration

of the sources is represented by a

were performed with ?Z = J.,i.e. the
was subdivided into four quadrants

consisting of a number of homo~cncou~:
rectang~l~r meshes, Then the integral trn.nsport.equation for the neutron
flux O(r,$l)for encrgj’group g a.r~ within a Lingle mesh (i,j) takes tl.c
form

o
.-

where UI(;,fi),q(r,fl)and O(F~,fi)are [I!,r,lllarneutron flux, total angular
volume source and angular neh~rcflboundury flux, re:;pcctively,I i.sthe
total,macroscopic cross Sectior],the directiorlfiis defined by th~ axial
and azimuthal angl?s 0 and ~, respectively, ;B is a poi]ltat Lhc surfucc of’



the mesh (i,j), and ~’ is a point on the line connecting ~ and ~
2“

In the above formula and hereafter the subscript g denoting the energy group
g will be omitted. AB usual, one now assumes that +..heangular dependence
of the flux 0, the total volume source q, and the given volume source S can
be expended into sphericaJ hwmcnics:

for O<eSm and Of$f2n. Owing to the axial.symmetry of fluxes and sources in
X-Y geometry mly each spherical harmonics appear in Eq. (20), k+m = even.
The anfiularvolume source moments q nre defined by

(L’].)

where ZSR.is the k-th component,of the rr,acroscor,ic scattcr~n~ cro:i:: :;~(:tiul:

and the ~lven volurm’ source moments S
hnk

include:the corl~ril’ution~fro]:.
other erler~ycroups.

1, ]

Ilt.’

N t Mitl(nl,l)

(;,; ,)



for !t+meven, Ose<fi,on.l:b~+n, and -$zn~a~$zn. The mgle a is measured from

the symmetry axis of the angular zone. $Zn is equal to (41n-$n-1)/2$where

‘$nand 41n-1are boundary angleu Gf the n’th zone starting at the x-axis vi+.h

n=O (see Fig. on the pre(ious page). N is the Ordtr of the PN approximation.

~+m is again choosen to be even because the angular flux is an even function

of 0 in X-Y geometry.

The boundary multiple PN flux moments $Lti ere given by the equatit~n

(23)

The zoml Zph.?ricalherrrmniczYz urc defined and their calculauional metllcxl
is described in Ref. 6 . T!leirorthogonality property ic

(1”)



The spatial distributions of the angular fiux and source moments inside of
mesh (ijj) are now approximated by Legendre polynomial series:

lhflr) ‘1

H
Q ‘2 ~uv

H
f.mkqhnk(;)=z(2U+1)PP(U

E
(2V+1)PV(”) ‘vqtti 3-

S
hnk(;) ‘=0

V=o
~pv

h-k

where K, = Max(O,M-(f.+m)/2) ,
‘?

= Max(O,M-(l+m)/2-~) ,
1.

and M is the order of the spatial flux a,id source approximation.The

s]~atialmoments 41~~k , q~~ and S[~ a,redcfi~ledby

(:’7)

wllf,r(~ K+ E }{I,x((I,K-I

1’I(JKl~l~l)r.oxillllllioll.”

(;’{1)

111)(1



1

pJEi
$ fhnk

H

+:;

.$ dw’ pv(w’)

4
Wi Wiv “
!?.mk -1

0Isnk

The coordinates w and w ‘ are defined by x = x,
B 1-1 + $(xi_xi-l)(w+l) ‘

and y
B ‘(Yj-Yj_~)(w’+l).= Yj_~ + ~

All comput~tions with SURCU, FINELM and DZFF-2D (2DB) were perf’c?rmedat EIR
on the CDC 64OO a mack,inr?which is ten to fourteen times slower than ti]c
CDC 7600. The times for a CDC 7600 were estimated from those for a CI.)C6400
by dividin~ by ten in order to give a conservative estimate.

The SURCU calculations are summarized in Table 3. For all computatlo!]s$ttic’
angular quadrants were not ~ubdivid(:dinto angular zones (Iz=l). Thin
approximation will be referred to a~ the quadruple QP~.

AIL}IOUC}Itl~~pre~cnt throry is fully incorporated into tilecode SURCU, it
ha::u~,to Il[)wo?]lybeen tc”:~t,edfor four an~ular quadrants, ie, for I =1.
T1lucff~’cLivc]le:;sof the mctllodfor u Crecitcrtlumberuf ar]~ularil~tc!:val!;

(lZ :’1)will be shown in futjurcpublications.

Tll Tutlc 3, (N, K, M) indicate N t}) order surface flux npproximutiorl,
Ki,)]order cpntia.1 I,egcndrcpolynomin] su,rfnceflux upproximatjon n]onC
mc:;hbouridarie!:mld Mt}iord~”rspntial,L,(’c(’ndrvapproximation:;for t!ltflux
irltjh(~mc:h.



CONCUJS1ONS

The poor convergence of the f’~nitedifference schemes in TWODANT and
DIFF-2D to the “exact” solution and the inability to converge even by ucirl~
a very fine mesh shows the need to develop more a{’curateschemes, usin~
higher oder polynomials over coarse meshes, thus dramatically reducing the
number of unknowns required, This reduces the demands on the computer
storage and the computational time for a Ui.venconvergence.



The convergence study for various M and K is to be found in Ref.7 .

Generally if an iterttive scheme is not well balanced and properly accelerated
the number of inner iterations increases very rapicllywith increasing order
>f spatial flux approximation and increasing number of meshes,

For example, fur DOT 3.5 (See Refs. 5 and 6), the problem co~d be conv~r~ed
only t’ora 4x4 mesh and a linea~ spatial flux approximation.Foran 8x8 and
higher number o’fmeshes,the inner iterations could cot be converged even
after a large number of iterations.The DOT 3.5 results published in Ref.8
were later found to be not sufficientlyconverged.

As mentioned befcre the tiffu~ionand the transport solutions of this bench-
mark problem are very C1OSC.

In order to compare the effectiveness’ofhigher order pGlyrromialapproxi-
mai;or]s of the spatial flux as a~airlstthe usual spatinl diffcrencin~
acherneand also draw a comparis~,lbetween different polynomial approxima-
tions, such as nodal in ‘1’WO?’RAN-NODALor MULTIMEDIUM, Leger]drepol,yljomiul
in CL!](CLJ,two diffusion codc~ wt!rcused.
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Total
k CPU Tine
eff

(see)

O.982?7 33
1.!30244 43
1.00758 46
1.00837 79
1.00858 100a
1.00874 170a
1.00666 440a

CPU Time per Mesh
and Iteration
(sec ● 103)

1.2
0.9
1.0
1.3
1.2
1.3
1.2



k
Total CPU CPU Time per Mesh mid

Zcne 5 e ff Time (sea) Iteration (sec*103)—.

O.TKA 1.01262 3.3 2.6
0.7811 1.0102: 7.8 1.7
c.7a59 1.00936 11.0 1.5
~.7a80 1.00898 18.6 1.1
0.7a93 1.00a70 36.6 0.9
2.7897 1.00862 67.7 1.0

0.!301g ~.,]c675 32.8 0.4



Takle 3. LKR Pool Reactor, SUIICUCalculations

K-S2er of Average Fluxes (X 10-3) Total CPU
Meskes SFY Zone 1 Zone 2 Zone 3 Zone 4

k
—s & Zone 5 eff—. .- Time (see)

4X4 lL. kGt3 G.521O 0.8624 1.0367 1.3320 0.77~21 0.2
~xd

3
16.510

G c!
0. L864 0.6761 0.9736 1.4367 0.80459 0.6

16fi6 16. ”718 o.3k58 S.2935 0.6984 1.2922 0.87820
22X32 16. L_ 0.2132 0.1076 0.4382 0.9994 0.94773 ::;
4XLJ 16.433 0.5218 0.8160 1.0390 1.3308 0.77441 0.3
5X3 16.532 0. La27 0.6354 13.97(33 1.4346 0.80600 1.3
:L5xL6 00 16.729 0.3389 0.2750 0.6913 1.2882 0.u8088 4.6
3~~3~ L 16.813 c . ‘2.12 0.1101 G.L603 1.0640 0.94803 13.5
6AxtSi 16.81+5 o._:21 0.0601 0.3575 0.9067 0. 9ah76 &6.3
4X4 16.433 0.5218 0.8160 1.0390 1.3308 0.77441 G.5
5X6

220
16.532 0.4827 d.6355 0.3703 1.4347 0.80600 2.0

~~~~ 16.728 0.3388 0.2757 0.6913 1.2882 0.88089 5.5
i2x32 16.8:7 0. 221n 0.1111 0.466? 1.0640 0. 9L 799 23.1
Lx& 16.433 0.5218 0.8160 1.0390 1.3308 o.77k41 F—
EX5 16.532 0.4827 G.6355 o.9-io3

3 00
1.4347 0.80600 2.8

1EX16 16.728 0.3388 0.2757 0.6913 1.2882 0.88089 7.1.
32x32 16.8?? G.221fi 0.111? 0.4662 1.0640 0.94798 31.0
4X4 16. 9K

——
0.3291 -0.1260 0.6662 1.8768 0.88906 0.5

8x6 16.948 u.1569 -0.0130 0.3455 0.9108 0.99124 1.7
1EXL6 5 11 17.830 0.1159 -C.0035 0.2700 0.7820
~z~ ~2

i. 01702 9.2
16.866 3.1253 ~. 0222 0. 2!t63

6-x6L
O. 696rJ 1.025u1 44.4

16.365 G.0976 0.0231 0.2272 0.6532 :.U3156 1>1.2 -
lbx4 16.932 0.33h2 -0.0999 0.6915 ‘——-1.8523 0.88557 0.6
axe 16.934 0.1672 “-0.2037 D. 3726 0.Q543 0.98259 3.5

16X36 lli 16.871 o-~3J3 0.0119 0. 3a63 U.e-’ Sb
32X32

1.00460 15.4
16.5>8 c.124? 0.0351 0.352 ~,,j9~2 1. 00ai 5 72.0

L$X6L 16.958 0.:241 0.5367 0.2941 0.”[890 1,00052 20i. 3—.



Ta-:ie ~(:ar.:. ). L_AiiPool Reactm, SU!lCUCalculations

!i.aierCf Average Fluxes (X lG-3)
k

Total CPU
-V-es~.~s n-‘* L- V A r.e1 zGze ? Zone3 Zone 4 Zone 5 eff Time (see J— == ——

&x& 16..932 G.3342 -0.U999 0.6815 1.8523 0.8c?557 1.1
~xj

lG.>3L
21 1

0.1672 -0.1033 0.3725 0.9544 c.98259 4.8
16X16 16.871 0.1303 U.01.26 0.3062 0.8138 ].00480 21.8
~~x~~ i6.858 C.1246 O ‘~362 0.2951 9.7911 1.008413 59.3——
-x- iL. Y3? 0. 33h2 -0.0939 0.6815 ~ .8523 0.88557 1.5
~~,~

311
1G. ;,34 0.1672 -0.1033 0.3725 C-9544 0.98259 5.9

I&~6 16.671 i).1303 0.0125 0.3062 d.t138 1.00480 29.6
vx:~ lt.958 G. 1246 C . C1362 0.2951 --11 1.00848 72.6

-X4 lo. jG9 0.1457 -0.1678 0.3282 : 0.98851 0.9
sx,~ . 22

i6. J71 0.1126 0.0125 0.2707 > 1.01072 3.4
1CJK16

J
16.861 0.1101 0.0307 o.264i . 4>1 1.01575 18.1

yx~> ic.963 G.l Gbl 0.0275 0.2512 0.7099 1.02200 91.1

- x- li.~j~$) u. li15Y -0. 15JQ cl.3L16 o. ~598 o.9&858 1.9
:x? ?: 4-5 r ,?:,.=

.J.ILI> fi.~l,,j u . 3LJ04 ~. 7Y7Y 1.00687 8.(J-.Qi-
Izxitj i ~ ~ 16.aj3 G.1243 0.0353 9.2944 0.7894 1.00871 37.1
z>~: 2.- .- 10.858 G.1241 0.0365 0.2Y41 0.789i) 1.00882 130.1

C-XEV IC.853 G. 1240 0.03(6 0.2940 C.7889 1.00988 303..1

~XL 16.j53 O. 1657 -C.:j(,l G. 36~5 0.8598 0.98859 h.1
6X: 16.872 C. 1275 0.0105 0.3CC3 0.7977 1.00689 15.8
l:X?: ~ ~ z lti.sjd 0.1243 c!. 0356 0.2943 0.7892 1.00874 64.8

22X:2 16.8~3 5.1241 0.L370 0.2939 0.78F16 1.0G887 149.2
64X6; 16.853 ~.1~~~ U.J371 0.2939 0.7u83 1. 00/390 391.2

2XL lG.959 o.lc5’i -C). 1501 0.3615 0.85!38 0.98859 6.6
2X? 16.3?2 0.1275 0.0105 0.3003 0.7977 1.00689 21.3

1EX16 322 ;6.658 G.1243 o.035b 0.2943 0.7892 1.00874 78.9

:2X32 16.258 c.1~41 0.G37C’ 0.2~39 C.7886 1.00887 195.3
5-X<; lr:.857 J.1~~~ 0.0372 o.~937 0.7882 1.00890 56!.1 -



Table 4. LUR Pool Reactor, FINELM and DIFF--2DDiffusion Calculations

Lx:
8X5 “

16x16
3&32

6LX64
T.

Average Fluxes
v.. Zo~e i Zone 2

16.917 0.4619
16.865 0.1852

1 16.866 0.1586
16.861 0.1500
16.859 0.1472

16.860 0.156L

2
16.864 0.1508
16 .~60 0.1474
16.859 0.1463

16.&72 0.1539
~ 16.860 0.1473

16.858 0.1462

(x 10-3)
Zone 3

-0.0726
0.0231
0.0222
0.0300
0.0339

0.0318
0.0255

0.0326
0.0352

0.0110
0.0326
0.0353

Zone h—.

1.C518
?.4336

0.3726
0.3517
0.3453

0.3653

0.3540
0.345.2
c.3h32

0.3620
0.3451
0.3431

4X4 16.858 0.1468 c.0368 0.3442

6x8 4 16.859 0.1463 0.0351 C 3432

1t5d6 16.858 iI.1461 0.0356 0.3430

.
bX4 18.165 0.0486 0.0385 0.1145

c- !3XG 17.498 0.0893 0.0896 0.2090
~ 1~~6 17.039 0.1206 0.0821 0 2837

~ 32x32 1 16.830 0.1364 0.0546 0.3215

64x6L 16.757 0.1425 0.0414 0.3350

k
Zone 5 ef f-—

3.6762 .78158
1.1359 .96203
0.9439 .98299
0.8960 .98947
0.8820 .99151

0.9329 .5a326
o.a961 .98892
0.8810 .99151
0.8775 .99217

0.8765 .98867
0.8812 .99152
0.8774 .99220

Q.8931 .99104
0.8777 .99214
0.8770 .99226

0.3352 1.07753
0.5917 1.03965
0.7598 1.01221
0.8342 .99896
o.a601 .99417

Total CPU
Time (see)

0.3 “
0.5
1.5
7.6
52.21

0.5
1.6
8.2
57.22

1.4
:.0

34.53

2.3
15.0

75.6:

0.5
0.9
2.5
9.9

35.4

~-~.e~.s the orner of tke spatial flux apprOxinlatiOn

1 2-x 2y dissectors

2 2-x ly dissector
3 3-x dissectors
Diffusion calculations made with D = l/(31tr) and ~tr = It - 1~1/3



g Zone 1

1 16.572
2 17. 34il

16. !331
{: 16.868

16.857
-+
&;

16.857
16.858

Table 5. Lb% Pool Reactor, Eigenvalue, FINELM Calculation *

Average Fluxes (x 10-3)
Zone 2 Zcne 3 Zone 4 Zone 5

0.4744 0.5620 0.8148 2.4167
0.1911 -0.8496 0.4369 1.0346
0.1551 0.0865 0.3625 0.8958
0.1474 0.0184 0.3456 0.8878
0.1470 0.0375 o.3b4L! 0.8771
0.1462 0.0350 0.3431 0.8777
0.1461 0.0354 0.3430 0.8770

k
eff

i).82703
0.96508
0. 987G 5
0.99109
0.99194
0.99219

0.99225

Total CPU
Time (see)

0.3

0.5
1.2

2.4

5.8
14.7

39.7

: 1 16.917 0.4619 -0.0726 1.0518 3.6762 .78158 0.3
A 16.860 o.15b4 0.038 0.3653 0.9329
;:

.98326 0.5
16.872 0.153) 0.0110 0.3620 0.8765 .98867 1.4

u 4 16.858 0.1468 0.0368 0.3442 0.8931 .99104 2.3
:

M- aenotes the spatial flux approximation
● ~xk s~a”.i~ flux mesh

Diffusion calculations made with D = l/(3Ztr) and Ztr = Et - 1s1/3



1.02

keff

1.01

1.00

:e:~y;!e
solution

0.99227

0.99

0,98



l.O

ke{

1,0”
e.stimal
‘exaf
solulio

1,0089

1,0(

0,9$

0.98

.
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